Calculation Policy

The following pages show the progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across the curriculum helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

Updated January 2024

Key Stage 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.
Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction:

Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.
Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division:

Building on their understanding, children develop methods to multiply up to 4 -digit numbers by single-digit and 2-digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 .
Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions:

Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.
Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with percentages of amounts understanding their relationship to fractions and decimals.

Year 5

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together? 0.6 m 0.2 m 	Use a bar model with a number line to add tenths. $0 \cdot 6+0 \cdot 2=0 \cdot 8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $\begin{array}{r} 0 \cdot \text { Tth } \\ \hline 0 \cdot 9 \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \end{array}$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ +0 \cdot 3 \\ \hline 1 \cdot \end{array}$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \quad 0 \\ +0 \cdot 65 \\ \hline \end{array}$

Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T O 0000 $000 \varnothing$$\qquad$ Now subtract the 10 s. Exchange I hundred for 10 tens.	Use column subtraction methods with exchange where required. $62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated $18,000+4,000$ mentally to check my subtraction.

Choosing efficient methods					To subtract two large numbers that are close， children find the difference by counting on． $2,002-1,995=$ ？ Use addition to check subtractions． I calculated 7，546－2，355 $=5,191$ ． I will check using the inverse．
Subtracting decimals	Explore complements to a whole number by working in the context of length．$\mathrm{Im}-\square \mathrm{m}=\square \mathrm{m}$$1-0 \cdot 49=?$	Use a place value grid to represent the stages of column subtraction，including exchanges where required．$5 \cdot 74-2 \cdot 25=?$			Use column subtraction，with an understanding of place value，including subtracting numbers with different numbers of decimal places．$3.921-3.75=?$$\left.\begin{array}{rccc}0 & \cdot & \text { Tth } & \text { Hth } \\ \hline 3 & \cdot & \text { Thth } \\ \hline & 2 & 1 \\ 3 & \cdot & 7 & 5\end{array}\right) 0$
		0 000	$\begin{array}{\|l\|c\|} \hline \text { • } & \text { Tth } \\ \hline \text { • } & \odot \odot \odot \\ \hline \end{array}$		
		Exchange I tent	th for 10 hundredth		
		0 000			
		Now subtract th	he 5 hundredths．		
		0 0000			
		Now subtract th	he 2 tenths，then the	the 2 ones．	
		0 $0 ⿴ 囗 ⿱ 一 一 ⿱ 宀 八 犬 女 口$	- Tth - $\varnothing \varnothing(\odot)$		

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Year 5 \\
Multiplication
\end{tabular} \& \& \& \\
\hline Understanding factors \& \begin{tabular}{l}
Use cubes or counters to explore the meaning of 'square numbers'. \\
25 is a square number because it is made from 5 rows of 5 . \\
Use cubes to explore cube numbers. \\
8 is a cube number.
\end{tabular} \& \begin{tabular}{l}
Use images to explore examples and nonexamples of square numbers.
\[
\begin{aligned}
\& 8 \times 8=64 \\
\& 8^{2}=64
\end{aligned}
\] \\
12 is not a square number, because you cannot multiply a whole number by itself to make 12.
\end{tabular} \& \begin{tabular}{l}
Understand the pattern of square numbers in the multiplication tables. \\
Use a multiplication grid to circle each square number. Can children spot a pattern?
\end{tabular} \\
\hline Multiplying by 10,100 and 1,000 \& \begin{tabular}{l}
Use place value equipment to multiply by 10 , 100 and 1,000 by unitising. \\
1000 \\
100 \\
10 \\
1 \\
\(\frac{1}{10}\) \\
\(\frac{1}{100}\) \\
\(\frac{1}{1000}\)

\end{tabular} \& Understand the effect of repeated multiplication by 10 . \& Understand how exchange relates to the digits when multiplying by 10,100 and 1,000 .

$$
\begin{aligned}
& 17 \times 10=170 \\
& 17 \times 100=17 \times 10 \times 10=1,700 \\
& 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000
\end{aligned}
$$

\hline
\end{tabular}

Soun Ean

Multiplying decimals by 10, $\mathbf{1 0 0}$ and 1,000
Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.

Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is 2,911,301. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems.$257,000+99,000=?$? $£ 257,000$ $£ 100,000$ I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations. This can be written as: $16 \times 4+16 \times 6$ $\frac{16 \times 4}{64}+\frac{16 \times 6}{96}=160$	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$

Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10. $10,000-500=?$

Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications.	Use place value equipment to compare methods. $\begin{gathered} \text { MethodI } \\ \hline \end{gathered}$	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications.
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages.

South Farnham

Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10,100 and 1,000	Use place value equipment to explore exchange in decimal multiplication.	Understand how the exchange affects decimal numbers on a place value grid.	Use knowledge of multiplying by 10,100 and 1,000 to multiply by multiples of 10,100 and 1,000. $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ = & 2,400 \\ 2 \cdot 5 \times 10 & =25 \\ 2 \cdot 5 \times 20 & =2 \cdot 5 \times 10 \times 2 \\ & =50 \end{aligned}$

Multiplying decimals

Explore decimal multiplications using place value equipment and in the context of measures.

3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths.

```
\stackrel { \longleftrightarrow } { \longleftrightarrow } \longleftrightarrow \longleftrightarrow
1.3 cm l.3 cm l.3 cm l.3 cm
4\times1 cm=4 cm
4\times0.3 cm=1.2 cm
4\times1.3=4+1.2=5.2 cm
```

Represent calculations on a place value grid.

$$
3 \times 3=9
$$

$$
3 \times 0.3=0.9
$$

Understand the link between multiplying decimals and repeated addition.

Use known facts to multiply decimals.
$4 \times 3=12$
$4 \times 0 \cdot 3=1 \cdot 2$
$4 \times 0.03=0.12$
$20 \times 5=100$
$20 \times 0.5=10$
$20 \times 0 \cdot 05=1$
Find families of facts from a known multiplication.

I know that $18 \times 4=72$.
This can help me work out:
$1 \cdot 8 \times 4=$?
$18 \times 0 \cdot 4=$?
$180 \times 0 \cdot 4=$?
$18 \times 0.04=$?
Use a place value grid to understand the effects of multiplying decimals.

Year 6 Division			
Understanding factors	Use equipment to explore different factors of a number.	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
Dividing by a single digit	Use equipment to make groups from a total. $24 \div 4=6$ $30 \div 4=7$ remainder 2		Use short division to divide by a single digit. $6 \longdiv { 1 \text { '3 2 } }$ $0 \quad 2$ $6 \longdiv { 1 ' 3 { } ^ { \prime } 2 }$ $\begin{array}{r} 0 \quad 2 \quad 2 \\ 6 \longdiv { 1 ' 3 ' 2 } \end{array}$ Use an area model to link multiplication and division. $6 \times ?=132$ $132=120+12$ $132 \div 6=20+2=22$

South Farnham

Dividing by a 2digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14=?$ 1,260 \square $1,260 \div 2=630$ $\begin{aligned} & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$	Use factors and repeated division where appropriate.
Dividing by a $2-$ digit number using short division		Use an area model alongside written division to model the process. $377 \div 13=\text { ? }$ 13 \square 13 \square 13 $377 \div 13=29$	Use short division by listing multiples of the divisor.

\begin{tabular}{|c|c|c|c|}

\hline Dividing by 10, 100 and 1,000 \& \begin{tabular}{l}
Use place value equipment to explore division as exchange.

1000

100

10

1

$\frac{1}{10}$

$\frac{1}{100}$

$\frac{1}{1000}$
\square

 \& Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid. \&

Use knowledge of factors to divide by multiples of 10,100 and 1,000 .

$$
40 \div 50=
$$

\square

$$
40 \rightarrow \div \div \div+\div
$$

$$
\begin{aligned}
& 40 \div 5=8 \\
& 8 \div 10=0 \cdot 8
\end{aligned}
$$

So, $40 \div 50=0 \cdot 8$
\end{tabular}

\hline Dividing decimals \& | Use place value equipment to explore division of decimals. |
| :--- |
| 8 tenths divided into 4 groups. 2 tenths in each group. | \& | Use a bar model to represent divisions. |
| :--- |
| $4 \times 2=8$ |
| $8 \div 4=2$ |
| So, $4 \times 0.2=0.8$ |
| $0.8 \div 4=0.2$ | \& Use short division to divide decimals with up to 2 decimal places.

$$
\begin{array}{l|l}
8 & 4 \cdot 24 \\
0 \cdot \\
8 & 4 \cdot{ }^{4} 2 \quad 4 \\
0 \cdot 5 \\
8 & 0 \cdot{ }^{4} 2{ }^{2} 4 \\
8 & 0 \cdot 5 \quad 3 \\
8 & 4 \cdot{ }^{4} 2{ }^{2} 4
\end{array}
$$

\hline
\end{tabular}

