Calculation Policy

The following pages show the progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across the curriculum helps children develop understanding across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods. Early learning in number and calculation in Year 1 is designed to build on progressively from the content and methods established in Early Years Foundation Stage.

Updated January 2024

Key Stage 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.
Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, lots of, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10s, to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.
A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with 15-3 and 15-13, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.
In Year 2, they will start to see calculations presented in a column format. Although this is not expected to be formalised until KS2, the children are introduced to the column method at the end of Year 2.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . At the end of Year 1 and throughout Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division. They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.
Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting.

- ${ }^{\text {S }}$ Educth Farnham

Year 1

	Concrete	Pictorial	Abstract
Year 1 Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7. 7 is one more than 6. Learn to link counting on with adding more than one. $5+3=8$
	Understanding part-whole relationship Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4 . The whole is 6 .	Understanding part-whole relationship Children draw to represent the parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6.	Understanding part-whole relationship Use a part-whole model to represent the numbers. $6+4=10$ $6+4=10$

Year 1 Addition \begin{tabular}{l}
Adding by counting on

Children use knowledge of counting to 20 to

find a total by counting on using people or

objects.

Adding by counting on

Children use counters to support and

represent their counting on strategy.
\end{tabular}

Year 1 Subtraction	Finding the difference Arrange two groups so that the difference between the groups can be worked out. 119P1 分 498909 8 is 2 more than 6. 6 is 2 less than 8. The difference between 8 and 6 is 2 .	Finding the difference Represent objects using sketches or counters to support finding the difference. $5-4=1$ The difference between 5 and 4 is 1 .	Finding the difference Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4 .
	Subtraction within 20 Understand when and how to subtract 1 s efficiently. Use a bead string to subtract 1 s efficiently. $0000000000-000-$ $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$ $15-3=12$	Subtraction within 20 Understand when and how to subtract 1s efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$

Year 1 Subtraction	Subtraction bridging 10 using number bonds For example: 12-7 Arrange objects into a 10 and some 1 s , then decide on how to split the 7 into parts. 7 is 2 and 5, so I take away the 2 and then the 5 .	Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames. For 13 - 5, I take away 3 to make 10, then take away 2 to make 8.	Subtraction bridging 10 using number bonds Use a number line and a part-whole model to support the method.
Year 1 Multiplication	Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s There are 5 pens in each pack ... 5...10...15...20...25...30...35...40...	Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s 100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Finding the total of equal groups by counting in 2 s , 5 s and 10 s Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Describe equal groups using words: Three equal groups of 4 . Four equal groups of 3 .

Year 2

	Concrete	Pictorial	Abstract
Year 2 Addition	Understanding 10 s and 1 s Use dienes block to create numbers in 10s and 1 s .	Understanding 10 s and 1 s Understand 10s and 1s equipment, and link with visual representation and drawings.	Understanding 10s and 1 s Represent and draw numbers on a place value grid.
	Adding 10s Use known bonds and unitising to add 10s. (III) I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Adding 10s Use known bonds and unitising to add 10s. I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Adding 10s Use known bonds and unitising to add 10 s. $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

Year 2 Addition | Adding a 1-digit number to a 2-digit |
| :--- |
| number not bridging a 10 |
| Add the 1s to find the total. Use known bonds |
| within 10 . |
| and |

Year 2 Addition	Adding a multiple of $\mathbf{1 0}$ to a 2-digit number using columns Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Adding a multiple of 10 to a 2-digit number using columns Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Adding a multiple of $\mathbf{1 0}$ to a 2-digit number using columns Add the 10 s represented vertically. Children must understand how the method relates to unitising of 10 s and place value. $1+3=4$ 1 ten +3 tens $=4$ tens $16+30=46$
	Adding two 2-digit numbers using a place value grid Add the 1s. Then add the 10s. Use physical dienes blocks.	Adding two 2-digit numbers using a place value grid Add the 1s. Then add the 10s. Use pictorial representations of dienes blocks.	Adding two 2-digit numbers using a place value grid Add the 1 s . Then add the 10 s .

	Adding two 2-digit numbers with exchange Add the 1 s . Exchange 10 ones for a ten. Then add the 10s. Use physical dienes blocks.	Adding two 2-digit numbers with exchange Add the 1 s . Exchange 10 ones for a ten. Then add the 10s. Use pictorial representations of dienes blocks.	Adding two 2-digit numbers with exchange Add the 1 s . Exchange 10 ones for a ten. Then add the 10s.
Year 2 Subtraction	Subtracting multiples of 10 Use known number bonds and unitising to subtract multiples of 10 . Use physical dienes blocks. 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Subtracting multiples of 10 Use known number bonds and unitising to subtract multiples of 10 . Use pictorial representations of dienes blocks. $\triangle \triangle A X A A X$ 8 subtract 6 is 2. So, 8 tens subtract 6 tens is 2 tens.	Subtracting multiples of 10 Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$

	Subtracting a single-digit number Subtract the 1 s . This may be done in or out of a place value grid.	Subtracting a single-digit number Subtract the 1 s . This may be done in or out of a place value grid.		Subtracting a single-digit number Subtract the 1s. Understand the link between counting back and subtracting the 1 s using known bonds.
	Subtracting a single-digit number bridging 10 Bridge 10 by using known bonds. $35-6$ I took away 5 counters, then 1 more.	Subtra 10 Bridge 35-6 First, I	a single-digit number bridging using known bonds. btract 5, then 1.	Subtracting a single-digit number bridging 10 Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$

Year 2 Subtraction	Subtracting a 2-digit number using place value and columns Subtract the 1s. Then subtract the 10s. This may be done in or out of a place value grid. Use physical resources. $45-16=30$	Subtracting a 2-digit number using place value and columns Subtract the 1s. Then subtract the 10s. Use pictorial representation of physical resources. $45-16=30$	Subtracting a 2-digit number using place value and columns Using column subtraction, subtract the 1 s . Then subtract the 10 s .
	Subtracting a 2-digit number with exchange Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s . Use physical dienes blocks.	Subtracting a 2-digit number with exchange Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s . Use pictorial representations of dienes blocks.	Subtracting a 2-digit number with exchange Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s .
			$\begin{array}{r} 10 \\ \hline 45 \\ -27 \\ \hline \end{array}$
			$\begin{array}{r} 100 \\ \hline 3415 \\ -27 \\ \hline \end{array}$
			$\begin{array}{r} 1 \quad 0 \\ \hline 3 / 45 \\ -\quad 27 \\ \hline \quad 8 \\ \hline \end{array}$
			$\begin{array}{r} 10 \\ \hline 3 / 45 \\ -27 \\ \hline 188 \\ \hline \end{array}$

| Year 2 |
| :--- | :--- | :--- | :--- | :--- |
| Multiplication |
| Equal groups and repeated addition |
| Repeated addition and as multiplication. |
| repequal groups and repeated addition |
| Recognise equal groups using standard |
| objects such as counters and write as |
| repeated addition and multiplication. |

Year 2		
Multiplication	Learning $\times 2, \times 5$ and $\times 10$ table facts Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.	Learning $\times 2, \times 5$ and $\times 10$ table facts Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.
and		

Learning $\times 2, \times 5$ and $\times 10$ table facts Understand how the times-tables increase and contain patterns.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Year 2 Division	Grouping equally Understand how to make equal groups from a whole. 8 divided into 4 equal groups. There are 2 in each group.	Grouping equally Understand the relationship between grouping and the division statements. $\begin{gathered} 12 \div 3=4 \\ 0 \\ 12 \div 4=3 \\ 0 \\ 12 \div 6=2 \end{gathered}$ $12 \div 2=6$	Grouping equally 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.
	Using known times-tables to solve divisions Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Using known times-tables to solve divisions Link equal grouping with known times-table facts to support division. 20 divided by 5 is 4 .	Using known times-tables to solve divisions Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ I used the IO -table $3 \times 10=30$ I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

